

Tables des Matières :

 0. Introduction à la Veille Technologique
Partie 1 : Projet "Élodie et Goupil" - Contexte et Ambition Narrative

1.1 Synopsis de l'Histoire
1.2 Déroulé Narratif et Gameplay
1.3 Personnages et Ambiance

Partie 2 : L'Hypothèse Initiale - La Technologie Quake (L'impasse)
2.1 Architecture et Avantages Identifiés (NZP)
2.2 Analyse Technique Approfondie du Moteur Quake (NZP)
2.3 La Limitation Critique (UI) et l'Abandon de Quake

Partie 3 : Le Pivot Stratégique - Les Technologies Web et BabylonJS
3.1 Architecture Moteur (BabylonJS)
3.2 Communication "Pure" et Résilience Réseau
3.3 Modularité (Multi-Repo) et Coopération Hybride
3.4 Pérennité (Préparation SSR)

Partie 4 : Pipeline d'Assets Optimisé pour le Web (BabylonJS)
4.1 Formats de Scène et Logique (glTF 2.0)
4.2 Textures (KTX2)
4.3 Interface (SVG, Lottie, WebP)
4.4 Audio, Vidéo et Données

Partie 5 : Conclusion - Philosophie, Portée et Futur du Projet
5.1 Philosophie et Intérêt
5.2 Résultat Actuel et Futur

0. Introduction à la Veille Technologique
Une veille technologique est un processus systématique de collecte, d'analyse et de diffusion
d'informations sur les avancées techniques, les nouvelles technologies, et les meilleures
pratiques dans un domaine spécifique.
L'objectif est d'aider à la prise de décision stratégique, d'anticiper les changements, d'identifier
les opportunités et de réduire les risques techniques.

Ce rapport documente la veille technologique progressive effectuée pour le projet de jeu vidéo
"Élodie et Goupil", retraçant la transition d'une architecture moteur de jeu traditionnelle (basée
sur Quake) vers une pile technologique Web moderne, performante et résiliente (basée sur
BabylonJS et les Web Workers).

Partie 1 : Projet "Élodie et Goupil" - Contexte et Ambition Narrative

Le projet "Élodie et Goupil" est un jeu vidéo 3D conçu comme une aventure narrative et
émotionnelle, jouable en solo ou en coopération (écran scindé local et en ligne).
L'ambition narrative est centrale et guide l'ensemble des choix techniques.

1.1 Synopsis de l'Histoire
Inspirée des nouvelles "De Goupil à Margot" de Louis Pergaud, l'histoire se déroule dans une
forêt européenne en hiver.
Le récit suit Élodie, une jeune fille de 12 ans, harcelée par les enfants du village (qui la traitent
de "meurtrière") et vivant dans l'ombre d'un traumatisme familial.
Lors d'une dispute violente, son père bûcheron et alcoolisé a tenté d'agresser sa mère (la
couturière) ; en voulant protéger cette dernière, Élodie a accidentellement tiré sur son père avec
une arme de chasse, le tuant.

L'intrigue débute lorsque des chasseurs locaux, menés par l'antagoniste Gustave, capturent un
jeune renardeau, Goupil, avec l'intention de l'empailler.
Ils forcent la mère d'Élodie, une couturière marginalisée (menacée de révéler son divorce
passé, à l'époque considéré comme une honte), à accepter la tâche.

Élodie, voyant sa propre blessure et son impuissance dans celles de l'animal, décide de le
sauver.
Avec l'aide de Camille, l'apothicaire du village, Goupil est soigné en secret.

Élodie prend alors la décision de fuir le village avec Goupil, marquant le début de leur voyage.

1.2 Déroulé Narratif et Gameplay
Le jeu est structuré en huit actes, retraçant la fuite d'Élodie et Goupil, leur survie dans la forêt
hivernale, et leur confrontation avec les menaces humaines et naturelles.

●​ Acte 1 (La Chute de Goupil) & Acte 2 (La Forêt des Premiers Pas) : Ces actes
couvrent la capture de Goupil, le flashback sur le traumatisme d'Élodie, la décision de
fuir, et les premiers obstacles (traversée de rivière, évitement des patrouilles).

●​ Actes 3 à 8 (Le Voyage, Les Secrets, La Résolution) : Ces actes développent la
survie, l'exploration de zones (village, forêt profonde, ruines, rivière gelée), et la
confrontation avec les antagonistes.

Les mécaniques de jeu (Gameplay) et les systèmes (Systèmes) sont conçus pour renforcer
l'immersion narrative :

●​ Mécaniques de Survie : Gestion de la santé et du froid (nécessitant repos et abris).
●​ Artisanat (Crafting) : Un système de crafting léger permet de fabriquer des abris, des

feux, des bandages et des remèdes à partir de ressources naturelles (bois, herbes,
tissus).

●​ Lien Compagnon (IA de Goupil) : Le cœur du gameplay repose sur le lien affectif entre
les deux protagonistes. Le joueur doit soigner et interagir avec Goupil.​
La confiance du compagnon (jauge invisible) influence son comportement (alerte des
dangers, aide à l'exploration, obéissance aux ordres).

●​ Furtivité et Exploration : Le joueur doit éviter les chasseurs (Gustave, Bastien) et
certains animaux sauvages.

●​ Narration Environnementale : Des flashbacks, des objets-souvenirs et des rencontres
(comme avec Louise) dévoilent le lore et le passé d'Élodie.

●​ Fins Multiples : L'histoire propose plusieurs fins (Exil, Ermite, Confrontation) basées sur
les choix narratifs du joueur.

1.3 Personnages et Ambiance
Le récit est soutenu par des personnages secondaires clés, tels que Camille (l'apothicaire
allié), Louise (la conteuse), Gustave (le chasseur antagoniste), Bastien (le harceleur),
Victorine (la fille du chasseur) et Le Maire (figure d'autorité neutre).

L'ambiance recherchée est poétique, mélancolique et immersive, similaire à des jeux comme
Never Alone, Endling, The Last Guardian ou Spirit of the North.

Partie 2 : L'Hypothèse Initiale - La Technologie Quake (L'impasse)
La première phase de la veille technologique du projet a consisté à évaluer la pertinence du
moteur Quake, en se basant sur l'étude de cas du projet open-source Nazi Zombies: Portable
(NZP).

2.1 Architecture et Avantages Identifiés (NZP)
L'architecture de NZP semblait initialement prometteuse.
Elle est décomposée en plusieurs parties, incluant différents forks du moteur Quake adaptés à
chaque plateforme :

●​ vril-engine (PSP, 3DS)
●​ fteqw (PC, Web)
●​ glquake (3DS)
●​ quakespasm (Switch, Vita)

Les avantages identifiés étaient significatifs :

●​ Multiplateforme : Une couverture exceptionnelle (PC, Web, consoles portables).
●​ Structure Standardisée : Une séparation claire entre les assets, le code de jeu

(quakec) et les outils.
●​ Fonctionnalités Moteur : Support natif de l'écran scindé (split-screen) et un éditeur de

niveau établi (TrenchBoom).

2.2 Analyse Technique Approfondie du Moteur Quake (NZP)
Une analyse approfondie du pipeline de build de NZP a été menée pour comprendre son
fonctionnement interne.

●​ Système de Build : Le build repose sur des scripts shell (qc-compiler-gnu.sh) qui
utilisent le compilateur fteqcc.​
Le projet utilise une structure modulaire séparant le code serveur (SSQC), client (CSQC)
et menu (MenuQC), chacun ayant ses propres defs.qc (fichiers de définitions).

●​ Gestion des Assets (PAK/WAD) : L'analyse a couvert la manière dont Quake gère les
assets, en étudiant la création de fichiers .pak (archives de jeu) et de fichiers .wad
(textures).​
Des scripts DenoJS ont été développés pour automatiser ce pipeline de build Quake,
montrant une première transition vers des outils modernes.

●​ Couche de Compatibilité (CSV) : L'étude du script qc_hash_generator.py a révélé
l'utilisation d'un asset_conversion_table.csv. Il s'agit d'une couche de
compatibilité historique.​
Elle sert à mapper les anciens chemins d'assets de Quake (ex: progs/player.mdl)
vers les nouveaux chemins utilisés dans NZP (ex: models/player.mdl), afin de ne

pas avoir à réécrire le code QuakeC hérité.​
Si les références dans le code QuakeC sont correctes dès le départ, ce mapping devient
inutile.

2.3 La Limitation Critique (UI) et l'Abandon de Quake
L'investigation technique a révélé une limitation rédhibitoire pour l'utilisation des technologies
Quake pour le projet "Élodie et Goupil" :

1.​ Absence de CSQC : L'analyse des logs et du code a montré que le moteur NZP
n'appelle pas les fonctions standards CSQC_Init ou CSQC_InputEvent (le code client
standard de Quake).

2.​ Remplacement par SUI : NZP utilise une bibliothèque d'interface utilisateur
personnalisée, sui_sys.qc (Shuld's Simple UI), qui est appelée directement depuis le
code côté serveur (SSQC).

3.​ L'Impasse (Code Moteur C++) : La découverte critique est que, à l'exception de la
version fteqw (PC/Web), la logique graphique et l'interface utilisateur (UI) de NZP sont
codées en dur directement dans les moteurs C/C++ de chaque fork (Vril,
Quakespasm, GLQuake).

Cette approche signifie que pour implémenter l'interface de crafting, de narration et de gestion
du compagnon d'Élodie, il aurait été nécessaire de répliquer et d'adapter la partie graphique
plusieurs fois, dans chaque moteur différents.

Cet effort de maintenance étant jugé rédhibitoire et contraire à une logique de développement
modulaire, la technologie Quake a été abandonnée.

Partie 3 : Le Pivot Stratégique - Les Technologies Web et BabylonJS
Face à l'impasse du moteur Quake, la veille s'est réorientée vers les technologies Web
modernes (HTML5, JS/TS, WebGL/WebGPU) et le moteur 3D BabylonJS, jugées plus adaptés
à la création d'interfaces interactives et à un développement multiplateforme unifié.

3.1 Architecture Moteur (BabylonJS)
Une nouvelle architecture a été conçue, basée sur BabylonJS, en séparant les responsabilités
via des Web Workers pour garantir qu'aucune logique lourde ne bloque le thread principal
(rendu).

●​ Thread Principal (Main) : Gère uniquement le rendu BabylonJS (WebGL/WebGPU) et
la capture des entrées utilisateur. Il ne doit jamais être bloqué.

●​ Worker Client (ClientWorker) : S'exécute dans un thread séparé. Gère la logique
spécifique au joueur, les intentions (commandes), et la communication.

●​ Worker Serveur (ServerWorker) : Simule l'intégralité du monde de jeu (physique, IA,
état).​
C'est un worker hybride :

●​ Mode Hors-Ligne (Fallback) : Il s'exécute localement dans le navigateur et agit
comme un Serveur Local.

●​ Mode En-Ligne : Il agit comme un Proxy de Communication qui relaie les
messages entre le ClientWorker et le Serveur Distant (WebSocket/WebRTC).

●​ Gestionnaire (Manager) : Orchestre la configuration et la communication.

3.2 Communication "Pure" et Résilience Réseau
Pour optimiser la performance et respecter l'isolation des threads, l'architecture utilise des API
web avancées :

●​ MessageChannel : Pour établir une communication "pure" et directe (sans copie de
mémoire si possible) entre le ClientWorker et le ServerWorker (local) sans jamais
passer par le thread principal, évitant ainsi tout goulot d'étranglement.

●​ Résilience Réseau : En mode en ligne, si la connexion au serveur distant
(WebSocket/WebRTC) est perdue, le client stocke les actions du joueur dans un
tampon.

●​ Fallback Automatique : Le ServerWorker est capable de basculer de manière
transparente d'un transport distant à un transport local sans perte d'états en cas de
déconnexion définitive. Cette option est contrôlable par le joueur.

●​ Transition Chaude (Hot Swap) : Pour une transition sans couture, le ServerWorker
utilise le lastKnownRemoteState (dernier état reçu du serveur distant) pour initialiser
la simulation locale, permettant au joueur de continuer sa partie sans interruption.

●​ Gestion des Intentions : Un ClientWorker stocke les actions du joueur durant une
déconnexion temporaire et les renvoie au serveur distant lors de la reconnexion pour
resynchronisation.

3.3 Modularité (Multi-Repo) et Coopération Hybride
L'architecture est conçue en multi-repo pour une séparation stricte des responsabilités :

●​ Elodie-Goupil : Le dépôt orchestrateur (méta-repo).
●​ engine/shared : Contient tout le code réutilisable (ECS, rendu, système de fallback,

réseau).
●​ client/server : Contient uniquement la logique métier du jeu (scripts d'IA, règles de

gameplay, UI).
●​ assets : Dépôt contenant les sources des assets catégorisées.
●​ web-server : Serveur Distant permettant le Multijoueur En-Ligne.
●​ native/react-native : Dépôts de Compilation pour différentes plateformes.

Cette structure supporte la Coopération Hybride :

●​ Co-op Locale (Écran Scindé) : Gérée par des modules génériques disponible dans le

code réutilisable.
●​ Co-op en Ligne : Gérée par le ServerWorker en mode proxy.

3.4 Pérennité (Préparation SSR)
La structure inclut des abstractions pour le rendu et des placeholders pour un futur Rendu Côté
Serveur (SSR), permettant d'envisager un streaming du jeu (type cloud gaming) si la machine
client n'est pas assez puissante.

Partie 4 : Pipeline d'Assets Optimisé pour le Web (BabylonJS)
La transition vers BabylonJS s'accompagne d'une refonte complète du pipeline d'assets,
s'éloignant des formats propriétaires (PAK, WAD) pour adopter des standards ouverts, libres de
droits et optimisés pour le GPU.

4.1 Formats de Scène et Logique (glTF 2.0)
●​ Format : Le standard est le glTF 2.0 (binaire .glb).
●​ Logique Map-like : Pour répliquer la flexibilité des entités Quake, la logique de jeu (ex:

classname: "func_door", targetname: "door1") est encodée dans le champ
extras du glTF.

●​ Workflow : Le pipeline de production passe par Blender.​
Les artistes ajoutent des "Propriétés Personnalisées" (Custom Properties) qui sont
exportées dans extras.​
BabylonJS lit ensuite ces extras via l'évènement OnPluginActivatedObservable
pour instancier les entités ECS correspondantes.

●​ Modularité : Le système différencie les assets statiques (intégrés au .glb de la carte)
des assets dynamiques (référencés par modelpath dans les extras et instanciés par
le moteur), optimisant ainsi la mémoire.

4.2 Textures (KTX2)
●​ Format : Pour une performance GPU maximale, toutes les textures 3D (Albedo, Normal,

PBR) utilisent le format KTX2 (Basis Universal).
●​ Justification : Ce format permet une compression GPU-native.​

Le moteur n'a pas besoin de décompresser le PNG/JPEG côté CPU, la texture est
transcodée à la volée par le pilote graphique (en ASTC, BCn, ETCn...) selon la
plateforme.

●​ Veille Alpha : L'analyse des options (ETC1S vs UASTC) a déterminé que le mode
UASTC est le meilleur compromis, offrant une qualité visuelle quasi-sans perte et un
support complet du canal alpha, ce qui est crucial pour le projet.

4.3 Interface (SVG, Lottie, WebP)
L'interface utilisateur (UI) est construite avec des formats web modernes pour garantir la
légèreté et la flexibilité, en remplacement du terme "GFX" de Quake :

●​ ui/svg/ : Icônes vectorielles (résolution infinie)
●​ ui/lottie/ : Fichiers .json Lottie pour les animations 2D complexes (HUD, menus)
●​ ui/raster/ : Fichiers .webp (ou AVIF) pour les images UI bitmap (sprites, fonds)

4.4 Audio, Vidéo et Données
●​ Audio : La musique et les voix sont standardisées en WebM (Opus).​

Les effets sonores courts (FX) ou bouclant précisément utilisent Ogg (Vorbis).

●​ Vidéo : Les cinématiques utilisent WebM (VP9 + Opus) (ou AV1), pour le meilleur ratio
qualité/poids sur le web.

●​ Données ("Meta-Assets") : Le dossier data/ contient les définitions non-visuelles :

●​ data/configs/ : Paramètres globaux.
●​ data/entities/ : Définitions des classname (comportements, stats).
●​ data/localisations/ : Fichiers de localisation (traduction).
●​ data/physics/ : Fichiers .bin (ou .json) pour les données de physique (ex:

NavMesh pour l'IA Havok).

●​ Shaders : Les shaders personnalisés sont gérés via le Node Material Editor de
BabylonJS et exportés en .json.

●​ Formats Sources (Veille) : Une analyse a été menée sur les formats sources optimaux
(EXR/TIFF/TGA pour HDR vs PNG/WebP) et sur l'utilisation d'archives (comme ASAR
ou ZIP) en tant que conteneurs de sources pour le pipeline de build, et non en tant
qu'assets de runtime.

Partie 5 : Conclusion - Philosophie, Portée et Futur du Projet

5.1 Philosophie et Intérêt
Le projet "Élodie et Goupil" a évolué d'une simple idée de mod Quake à une architecture de jeu
Web complète, modulaire et résiliente.​
La veille technologique démontre une transition claire d'une dépendance à des technologies

héritées (Quake, PAK, WAD et UI codée en dur) vers une pile 100% open-source et
"Web-native" (glTF, KTX2, WebM, Web Workers).

La philosophie du projet est de :

1.​ Prioriser la Performance : Utilisation de formats GPU-natifs (KTX2) et isolation des
threads (Web Workers).

2.​ Garantir la Modularité : Séparation stricte du "Moteur" (engine/shared) et du "Jeu"
(client/server), permettant la réutilisation et la maintenance.

3.​ Assurer la Résilience : Conception "Offline-first" avec fallback automatique et stockage
des intentions réseau.

4.​ Pérenniser le Projet : Utilisation exclusive de standards ouverts et libres de droits
(Khronos, W3C) et anticipation des évolutions futures (SSR).

5.2 Résultat Actuel et Futur
Le projet dispose d'une architecture technique détaillée et d'un scénario narratif complet en 8
actes, prêt pour la phase de pré-production.​
La pile technologique (BabylonJS + Workers + glTF/KTX2) est validée comme étant la solution
optimale pour répondre aux ambitions narratives et techniques du projet.

La suite du projet soulève plusieurs questions stratégiques pour la prochaine phase de
développement :

●​ Implémentation du Rendu Côté Serveur (SSR) : La structure est prête, mais quand et
avec quelles technologies (WebGPU headless, WebRTC, streaming vidéo) cette
fonctionnalité sera-t-elle implémentée pour les clients légers (mobiles, GPU non dédiés)
?

●​ Optimisation des Builds Natifs : Les dépôts native et react-native utiliseront-ils
BabylonJS Native, ou des technologies tierces nécessitant une veille complémentaire ?

●​ Gestion des Entités (Map-like) : Comment la logique des extras glTF sera-t-elle
gérée ? Un éditeur visuel (par exemple, un addon Blender personnalisé) sera-t-il
développé pour faciliter la création de niveaux ?

●​ Synchronisation Réseau : Quelle stratégie de synchronisation réseau (snapshots
complets, compression delta des états, ou "lockstep") sera utilisée pour le mode en ligne
afin de gérer la latence de manière optimale ?

	
	Tables des Matières :
	
	0. Introduction à la Veille Technologique
	Partie 1 : Projet "Élodie et Goupil" - Contexte et Ambition Narrative
	1.1 Synopsis de l'Histoire
	1.2 Déroulé Narratif et Gameplay
	1.3 Personnages et Ambiance

	Partie 2 : L'Hypothèse Initiale - La Technologie Quake (L'impasse)
	2.1 Architecture et Avantages Identifiés (NZP)
	2.2 Analyse Technique Approfondie du Moteur Quake (NZP)
	2.3 La Limitation Critique (UI) et l'Abandon de Quake

	Partie 3 : Le Pivot Stratégique - Les Technologies Web et BabylonJS
	3.1 Architecture Moteur (BabylonJS)
	3.2 Communication "Pure" et Résilience Réseau
	3.3 Modularité (Multi-Repo) et Coopération Hybride
	3.4 Pérennité (Préparation SSR)

	Partie 4 : Pipeline d'Assets Optimisé pour le Web (BabylonJS)
	4.1 Formats de Scène et Logique (glTF 2.0)
	4.2 Textures (KTX2)
	4.3 Interface (SVG, Lottie, WebP)
	4.4 Audio, Vidéo et Données

	Partie 5 : Conclusion - Philosophie, Portée et Futur du Projet
	5.1 Philosophie et Intérêt
	5.2 Résultat Actuel et Futur

